MATHEMATICA MORAVICA
VoL. 8-1 (2004), 33-38

Stationary Points for Multifunctions on
Two Complete Metric Spaces

VALERIU Pora

ABSTRACT. In this paper we prove a general fixed point theorem for multi-
functions on two complete metric spaces which generalizes the main results
from [2] and [5].

1. INTRODUCTION

Let (X, d) be a complete metric space and let B(X) be the set of all nonempty
subsets of X. As in [1] we define the function §(A, B) with A and B in B(X) by
d(A, B) = sup{d(a,b) :a € A,b € B}.

If A is consists of a single point we write §(A, B) = d(a, B). If B also consists
of single point b then §(a,b) = d(a,b). It follows immediately that: 6(A, B) =
d(B,A) >0and 0(A,B) <§(A,C)+0(C,B) for A, B, C'in B(X). If §(A,B) =0
then A = B = {a}.

Now if {A, : n=1,2,...} is a sequence in B(X), we say that it converges to the
set A in B(X) if:

(i) each point @ € A is limit of some convergent sequence{a, € A, : n =
1,2,...};

(ii) for arbitrary e > 0, there exists an integer N such that 4,, C A forn > N,
where A, is the union of all open spheres with centers in A of radius e.

The set A is said to be limit of the sequence {A,}.
The following Lemma was proved in [1].

Lemma 1.1. If {A,} and {B,} are sequences of bounded subsets of a complete
metric space (X, d) which converges to the bounded subsets A and B, respectively,
then the sequence {0(Ay,, Bn)} converges to 6(A, B).

Let T be a multifunction of X into B(X). z is a stationary point of T if
Tz ={z}.

In 1981, Fisher [2] initiated the study of fixed points on two metric spaces. In
1991, the present author [5] proved other theorems on two metric spaces.
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The following fixed points theorems are proved in [2], resp. [5].

Theorem 1.1 ([2]). . Let (X,d) and (Y, p) be complete metric spaces. If T is a
mapping of X into Y and S is a mapping of Y into X satisfying the inequalities

p(Tx, TSy) < cmax{d(z, Sy), p(y,Tx), p(y, TSy)},
d(Sy, STz) < emax{p(y, Tz),d(, Sy),d(z, STx)}

forallz in X and y in'Y, where 0 < ¢ < 1, then ST has a unique fized point z
in X and T'S has a unique fized point w in Y. Further, Tz = w and Sw = z.

Theorem 1.2 ([5]). Let (X,d) and (Y,e) be complete metric spaces. If T is a
mapping of X intoY and S is a mapping of Y into X satisfying the inequalities

¢*(Tz, TSy) < crmaz{d(z, Sy)e(y, Tw), d(x, Sy)e(y, TSy), ey, Tx)e(y, TSy)},
d?(Sy, STxz) < comaz{e(y, Tx)d(x, Sy), e(y, Tx)d(zx, STx),d(x, Sy)d(z, STxz)}

for all x in X and y in Y, where 0 < c¢1,c0 < 1, then ST has a unique fized
point z in X and T'S has a unique fixed point w in Y. Furthermore, Tz = w and
Sw = z.

Recently, some fixed points theorems for multifunctions on two complete metric
spaces have been proved in [3], [4], [6].

In this paper we prove two generalizations of Theorems 1 and 2 for single valued
and set valued mappings satisfying two implicit relations.

2. IMPLICIT RELATIONS

Let F4 be the set of all continuous functions F : Ri — R such that:
(F1) : F is nonincreasing in variables ta, t3;
(F») : there exists h € [0,1) such that for every u > 0,v > 0 with:
a) F(u,0,u,v) <0 or b) F(u,u,0,v) <0
we have u < hv.

Example 2.1. F(ty,...,t4) = t; — kmax{ts, t3,t4} where k € [0, 1).
(F1): Obviously.
(F): Let uw > 0 and F(u,0,u,v) = u — kmazx{u,v} <0.
If w > v then u(1 — k) <0, a contradiction.
Thus v < v and u < hv. Similarly, F(u,u,0,v) < 0 implies u < hv.
If w =0, then u < hwv.

Example 2.2. F(ty,...,t;) = t2 — cmax{taty, tots, t3t4} where c € [0,1).
(F1): Obviously.
(Fp): Let w > 0 and F(u,0,u,v) = u? — cuv < 0, which implies u < hw,
where h = ¢ € [0,1).
Similarly, F'(u,u,0,v) < 0 implies u < hv.
If u =0, then u < hwv.
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Example 2.3. F(t1,...,t4) = t§ — (at¥ty + bt3 + ct}) where a,b,c > 0 and
a+b+c<l
(F1): Obviously.
(Fp): F(u,0,u,v) = u — [bud + cv®] < 0 implies u < hyv, where h; =
(1%)3 < 1.
Similarly, F(u,u,0,v) < 0 implies v < hgv, where hy = (1fa)% < 1. Let
h = max{hy, ha}, then u < hv.

Example 2.4. F(ty,...,t4) =t1 — c% where 0 < ¢ < %

(F1): Obviously.

(Fy): F(u,0,u,v) = u— c%‘é’ implies u — ¢(u + v) < 0 and u < hv, where
h = & < 1. Similarly, F(u,u,0,v) < 0 implies u < hv.

3. MAIN RESULTS

Theorem 3.1. Let (X,d;) and (Y,d2) be two complete metric spaces and let F'
be a mapping of X into B(Y) and let G be a mapping of Y into B(X) satisfying
the inequalities:

(1) ®,(01(GFx,Gy),di(z,Gy),01(z, GFx),d2(y, Fx)) <0

(2) (1)2(52(FGy7F$)7dQ(yan)762(ya FGy)a51($aGy)) <0

for all x in X and y in'Y, where ®1, P9 € Fy, then GF has a stationary point
z in X and FG has a stationary point w in Y. Furthermore, Fz = {w} and

Gw = {z}.

Proof. Let x1 be an arbitrary point in X. Define sequences {z,} and {y,} in X
and Y, respectively, as follows: choose a point y; in Fz; and a point 2 in Gy;.
In general, having chosen z, in X and y, in Y, we choose x,+1 in Gy, and then
Yp+1 in Fpeg forn=1,2,....

Then, by (1), we have successively

Q1 (01(GF2py1, GYn)s di(Tns1, Gyn), 01 (Xnt1, GFxng1), 62(Yn, Frngr)) <0

D1 (01(GFxpy1, Gyn), 0,01(Gyn, GF2n11), 02(Yn, Frng1)) <0
which implies
(3) 61(GFxny1, Gyn) < hdo(Yn, Frni1).
By (2) we have successively

CI)Q((SQ(FG?JmF«Tn);dz(ymFl’n),52(ynaFGyn);51($n7Gyn)) S 0

q>2(52(FGyna F:L'n)a 0, 52(F{L‘n, FGyn)a 51(73717 Gyn)) <0
which implies

(4) 52(FGyn7Fxn) < h251($nuGyn)-
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Thus, it follows from (3) and (4) that
d1(Tn+1, Tnt2) < 61(GYn, GFTn11) < hi02(Yn, Frni1) < hide(Fan, GFy,) <
§ h1h251 (l‘n, Gyn) <... (hlhz)n51($1, GFxl)

Similarly, we can prove that
d2(Yn+1,yn) < (hahe)"02(y1, FGy).
Now, it follows that for n =1,2,... and r € N*
d1(Tnt1, Tntr1) < 01(GYn, GFTp4r) <
< 01(GYn, Gynt1) + 61(GYnt1, Yng2) + -+ +
+ 61(GYntr—1, GFTpyr) <
< 01(Gyn, GFrpi1) + 01(Gynt1, GFxpyo) + -+
+ 61(GYntr—1, GFTpyr) <
< {(h1h2)™ + (hah2)™ ™ + - 4 (hihe)" T 1}61 (21, GF21) < €

for n greater than some N since hiho < 1.

Therefore, the sequence {z,,} is a Cauchy sequence in the complete metric space
X and so it has a limit z in X.

Similarly, the sequence {yy,} is a Cauchy sequence in the complete metric space
Y and so it has a limit w in Y.

Further

01 (2, GFxy) < di(2, m+1) + 01 (xmt1, GFay) <

dl(Z7 $m+1) + 51(Gyma GF'ZTL)
dq

(2, Zmy1) + € for m,n > N.

VANVANVAN

Letting m tend to infinity it follows that
0(z,GFxy,) <€
for n > N and

(5) lim GFz, = z = lim Gy,.
Similarly,
(6) lim FGy, = w = lim Fz,.

Using inequality (2) and (F}) we have
D9 (02(FGyn, Fz),02(Yn, Fz),02(Yn, FGyn),01(z, Gyn)) < 0.
Letting n tend to infinity we obtain successively
Dy (02(w, Fz),00(w, Fz),d2(w,w),d1(z,2)) <0
Dy (52 (w, Fz),d2(w, Fz),0,0) <0
which implies d2(w, Fz) = 0. Thus
(7) Fz ={w}.
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Similarly, we can prove that
(8) Gw = {z}.
From (7) and (8), it follows that
GFz=Gw={z} and FGuw = Fz={w}.

Thus z is a stationary point of GF and w is a stationary point of FG. This
completes the proof of Theorem 3. O

Theorem 3.2. Let (X,d1) and (Y,ds2) be two complete metric spaces and let f
be a single valued mapping of X into Y and g a single valued mapping of Y into
X satisfying the inequalities

(1) ®1(di(gfx, gy), dr(x, gy), di(x, g fx), d2(y, fx))
(2) Do(d2(fgy, fx), d2(y, f), da(y, foy), di(z, gy))

forall x in X and y in'Y, where &1, P9 € Fy.
Then gf has an unique fized point z in X and fg has an unique fixed point w
m Y. Further, fz=w and gw = 2.

0
0

IA A

Proof. The existence of z and w follows from Theorem 3. Now suppose that gf
has a second fixed point 2’.
Then by (1’) we have successively

(I)l(dl(gfz7gle)7 dl(zv gle)v dl(Z,ng), dQ(fZ/7 fZ)) <0
Dy (di(2,2"),d(z,2"),0,d(fz, f2')) <0

which implies
(9) d(z,2') < hid(fz, f2').
Similarly, by (2') we have successively

Do(da(fgfz, f2'),da(f2, f2),da(f2, fofz),di(2',gf2)) <O
Do (do(fz, f2'),d(fz, f2'),0,d(z,2") <0

which implies
(10) do(fz, f2') < hod(z, 7).
By (9) and (10) we have
di(z,21) < hida(fz, f2') < (h1h2)di(z, 7).

Since hihs < 1 it follows that z = 2’.
Similarly fg has a unique fixed point. O

Corollary 3.1. Theorem 1.1.
Proof. The proof follows from Theorem 3.2 and Example 1. U
Corollary 3.2. Theorem 1.2.
Proof. The proof follows from Theorem 3.2 and Example 2. U
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